3 research outputs found

    Compression Technique Using DCT & Fractal Compression: A Survey

    Get PDF
    Steganography differs from digital watermarking because both the information and the very existence of the information are hidden. In the beginning, the fractal image compression method is used to compress the secret image, and then we encrypt this compressed data by DES.The Existing Steganographic approaches are unable to handle the Subterfuge attack i.e, they cannot deal with the opponents not only detects a message ,but also render it useless, or even worse, modify it to opponent favor. The advantage of BCBS is the decoding can be operated without access to the cover image and it also detects if the message has been tampered without using any extra error correction. To improve the imperceptibility of the BCBS, DCT is used in combination to transfer stego-image from spatial domain to the frequency domain. The hiding capacity of the information is improved by introducing Fractal Compression and the security is enhanced using by encrypting stego-image using DES.  Copyright © www.iiste.org Keywords: Steganography, data hiding, fractal image compression, DCT

    Brain Tumor Detection and Multi Classification Using GNB-Based Machine Learning Approach

    Get PDF
    In an abnormal tissue called a brain tumor, the cells of the tumor reproduce quickly. if no control over tumor cell growth. The difficulties involved in identifying and treating brain tumors Machine learning is the most technologically sophisticated tool for classification and detection, implementing reliable state-of-the-art A.I. as well as neural network classification techniques, the use of this technology in early diagnosis detection of brain tumors can be accomplished successfully. it is well known that the segmentation method is capable of helping simply destroy the brain's abnormal tumor regions In order to segment and categorize brain tumors, this study suggests a multimodal approach involving machine learning and medical assistance. Noise can be seen in MRI images. To make the method for eliminating noise from images easier, a geometric mean is used later. The algorithms used to segment an image into smaller pieces are fuzzy c-means algorithms. Detection of a specific area of interest is made simpler by segmentation. The dimension reduction procedure is carried out using the GLCM. Photographic features are extracted using the GLCM algorithm. Then, using a variety of ML techniques, like as CNN, ANN, SVM, Gaussian NB, and Adaptive Boosting, the photos are categorized. The Gaussian NB method performs more effectively with regard to the identification and classification of brain tumors. The plasterwork work achieved 98.80 percent accuracy using GNB, RBF SVM
    corecore